Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Neotrop. entomol ; 39(1): 28-34, Jan.-Feb. 2010. tab, ilus
Article in English | LILACS | ID: lil-540931

ABSTRACT

The boll weevil causes serious damage to the cotton crop in South America. Several studies have been published on this pest, but its phenology and behavior under the tropical conditions prevailing in Brazil are not well-known. In this study the feeding behavior and main food sources of adult boll weevils throughout the year in Central Brazil was investigated. The digestive tract contents of insects captured in pheromone traps in two cotton fields and two areas of native vegetation (gallery forest and cerrado sensu stricto) were analyzed. The insect was captured all through the year only in the cerrado. It fed on pollen of 19 different plant families, on Pteridophyta and fungi spores and algae cysts. Simpson Index test showed that the cerrado provided greater diversity of pollen sources. In the beginning of the cotton cycle, the plant families used for pollen feeding were varied: in cotton area 1, the weevil fed on Poaceae(50 percent), Malvaceae and Smilacaceae (25 percent each); in cotton area 2 the pollen sources were Malvaceae (50 percent), Asteraceae (25 percent) and Fabaceae and Clusiaceae (25 percent each); in the cerrado they were Chenopodiaceae (67 percent) and Scheuchzeriaceae (33 percent). No weevils were collected in the gallery forest in this period. After cotton was harvested, the family Smilacaceae was predominant among the food plants exploited in all the study areas. These results help to explain the survivorship of adult boll weevil during cotton fallow season in Central Brazil and they are discussed in the context of behavioral adaptations to the prevailing tropical environmental conditions.


Subject(s)
Animals , Feeding Behavior , Weevils/physiology , Brazil
2.
Neotrop. entomol ; 31(4): 497-513, Oct.-Dec. 2002. tab
Article in English | LILACS | ID: lil-514215

ABSTRACT

Cultivares transgênicas de várias culturas estão sendo utilizadas em escala comercial em muitos países. A área dedicada ao cultivo com plantas transgênicas resistentes às pragas em todo o mundo alcançou 13 milhões de hectares em 2001. As cultivares transgênicas proporcionam benefícios, mas também apresentam riscos potenciais. As avaliações do seu impacto no ambiente são conduzidas antes da sua aprovação para uso comercial, como requerido pelas normas de biossegurança. Nesta revisão, serão discutidas as conseqüências ecológicas potenciais do uso comercial na agricultura de cultivares geneticamente modificadas que apresentam resistência aos insetos-pragas. Também serão discutidos os impactos ambientais causados pelas mudanças nas práticas agrícolas, identificando-se falhas e oportunidades de pesquisa, considerando-se essa nova ferramenta tecnológica. Os comentários e análises serão baseados no conhecimento atual que se tem dos riscos e beneficios do uso de cultivares resistentes a insetos, geneticamente modificadas, dentro do contexto dos programas de manejo integrado de pragas tradicionais.


Transgenic crops are currently being cultivated on a commercial scale in many countries. The area devoted to transgenic pest resistant varieties worldwide reached 13 million hectares in 2001. These varieties offer valuable benefits but also pose potential risks. Assessments of their impact on the environment are conducted before they are approved for commercial use, as required by the regulatory biosafety frameworks. In this review, we discuss the potential ecological consequences of the commercial use in agriculture of genetically modified insect resistant crops. We also discuss the impacts caused by the change in agricultural practices, and attempt to identify gaps and possible opportunities for research, considering this new technological tool. We based our analysis and comments on the current knowledge of the risks and benefits of these genetically modified insect resistant crops, within the context of traditional insect management strategies.

SELECTION OF CITATIONS
SEARCH DETAIL